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(37)  G. A. Olah, Ace. Chem. Res., 4, 240 (1971); see also: P. Rys, P. Skra- 
hal. and H. E. Zollinger, Angew. Chem., Int. E d .  Engl., 11,874 (1972). 

The reaction of methyl-d3 chlorofromate with ani- 
sole is interesting because it reveals that the reaction 
proceeds predominantly by initial attack on the oxy- 
gen. The isotopic composition has been determined 
as a function of time and shown to fit the scheme 
shown.38 Moreover, the intermediate methyl(methy1- 
d3)phenyloxonium ion does not undergo intramolec- 
ular rearrangement to o -methylanisole. Since previ- 
ous recognition of such complexes in electrophilic ar- 
omatic substitution has depended on unusual yields 
of ortho products, these results suggest that the in- 
termediacy of n complexes could be much more gen- 
eral than previously recognized. 

T h e  work in m y  laboratories was carried out b y  the  exception- 
al ly  able collaborators named i n  the  footnotes. I a m  grateful to  
t h e m ,  and we are grateful to  the  National  Science Foundation 
and the  National  Inst i tutes  of Heal th  for support .  

(38) P. Beak, J. T. Adams, P. D. Klein, P. A. Szczepanik, D. A. Simpson, 
and S. G. Smith, J .  Am. Chem. SOC., 95,6027 (1973). 
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While thermodynamics continues to play a central 
role in chemistry and other sciences concerned with the 
thermal properties of matter, the basic formalism for 
equilibrium thermodynamics largely retains the form 
which it was given in the latter half of the 19th century, 
culminating in the work of Gibbs.l A recent writer re- 
flects a widespread view in remarking, “We may be 
reasonably certain that a treatise on, say, thermody- 
namics, published in the year 2000 will not be funda- 
mentally different from one available today. . .”.z 

New research3 suggests that this prognosis may be 
unduly pessimistic. Examination of the formalism of 
equilibrium thermodynamics has revealed an unex- 
pected facet of the theory, a geometrical character 
which provides a new set of tools for the solution of 
practical thermodynamic problems. This geometric 
character is quite distinct from that known to thermo- 
dynamicists since the time of Gibbs, but is instead more 
reminiscent of that of modern gravitation theory, or of 
quantum theory in Hilbert space. 

Because these new developments are of an abstract 
and mathematical character, it may clarify their sig- 
nificance to refer initially to a quite different area of 
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Ph.D. degree from Harvard University in 1967, with E. E. Wilson. After post- 
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P. Sioan Fellow (1970-1972) and Camille and Henry Dreyfus Foundation Fellow 
(1972-present), he is engaged in research on quantum-mechanical variational 
principles, the theory of “through-bond” coupling in extended u systems, and 
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science-that of quantum mechanics. In quantum 
theory, certain formal features (by now widely familiar) 
may be identified which are found to have counterparts 
in the context of a general theory of thermodynamic 
equilibrium. The nature of the new thermodynamic 
work can therefore be suggested by reference to the 
analogous features of the quantum t h e ~ r y , ~  in particular 
to  the central role of the abstract “scalar products” 
between abstract “vectors,” and the implied geometrical 
structure. The empirical basis of the Gibbsian formal- 
ism will be summarized in a form which reveals how the 
thermodynamic laws imply, and are implied by, an 
underlying geometric structure of the theory. Some 
general features of the resulting geometric formalism 
of equilibrium thermodynamics will be noted in con- 
clusion. 

Quantum Theory and Thermodynamics 
Modern quantum theory is known to depend in a 

fundamental sense on the mathematical properties of 
Hilbert space, whose intrinsic role in a proper formu- 
lation of the theory was stressed particularly by von 
Neumann.j In Schrodinger’s wave mechanics, each state 

(1) J. W. Gibbs, “Collected Works”, Vol. I. Longmans, Green, and Co., New 

(2)  Phys.  Today ,  27,51 1974). 
(3) (a) F. Weinhold, J .  Chem. Phys . ,  63, 2479 (1975); (h) ibid., 63, 2484 

(1975); (c) ibid., 63,2488 (1975); (d) ibid., 63,2496 (1975); (e) ibid., to be pub- 
lished. 

(4) Such similarities allow one, for example. to draw an analogy between 
the stability conditions of thermodynamics (such as Le Chhtelier’s principle) 
and variational inequalities of quantum theory; see, e .g . .  F. Weinhold, Adu .  
QuantLim Chem., 6,299 (1972). 

York, N.Y., 1928. 
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function *;(XI, x2, . . .) is an ordinary differentiable 
function of the spatial coordinates, but von Neumann 
emphasized that QL should be regarded more generally 
as a “vector” [ i )  of an abstract Hilbert space. 

l i )  - *i(x1, x2, . . .I ( l a )  
In this space, the physical predictions (“probability 
amplitudes”) of the theory are associated with scalar 
products ( i l j )  among abstract state vectors. To make 
contact with Schrodinger’s wave mechanics, it is nec- 
essary to exhibit a definition for the symbol ( i l j )  which 
has the properties of a Euclidean scalar product; such 
a definition is 

dxldX2.. . ( lb)  

The importance of this perception is to suggest how 
other representations of the theory might be con- 
structed in quite different mathematical languages. For 
example, if the abstract I i ) ’ s  are identified with one- 
dimensional matrices (column arrays), ci 

a scalar product having the appropriate Euclidean 
properties can be defined in terms of (column) matrix 
multiplication as 

Historically, the (Heisenberg) matrix representation (eq 
2a,b) of quantum theory preceded Schrodinger’s wave 
representation (eq la,b); only later were these appar- 
ently. dissimilar theories recognized to be different 
facets of a single underlying theory in Hilbert space. 

Because the definitions lb ,  2b make possible an easy 
“translation” from one formalism to the other, it might 
appear that  nothing has been gained. However, the 
practicing quantum chemist is well aware of the ad- 
vantage of using special techniques of one formalism or 
the other to solve particular problems; he may, for ex- 
ample, in one moment draw inferences from nodes, 
phases, and other wave properties of molecular orbitals 
which were in the previous moment calculated by the 
techniques of matrix algebra. Moreover, it is known that 
the wave mechanical representation cannot consistently 
treat degrees of freedom (e.g., spin) which have no ex- 
pression as functions of the spatial coordinates, so that 
resort to an alternative representation may be a matter 
of necessity as well as convenience. 

These general features of quantum theory have an 
interesting parallel in the general theory of equilibrium 
thermodynamics. In the Gibbsian formalism, the state 
of the system is described by a differentiable function 
of the thermodynamic coordinates X ,  

U = U(X1,  x2, . . .) (3) 
where each X ;  denotes one of the extensive state vari- 

( 5 )  J. von Neumann, “Mathematical Foundations of Quantum Mechanics”, 
Princeton University Press, Princeton, N.J., 1955. 

ables-such as entropy, S ,  volume, V ,  and the mole 
numbers, N1, N z ,  . . . , of the independent chemical 
components (or independent linear combinations of 
these variables)-and U is the internal energy (“ther- 
modynamic potential”) of the system. Of special interest 
are the partial derivatives of U ,  the “field”6 variables 
Ri 

(4) 
Because eq 4 resembles the equations of classical me- 
chanics which define “conjugate” coordinates and 
momenta (with the thermodynamic potential U taking 
the place of the mechanical Lagrangian function), each 
R; is referred to as the (thermodynamic) conjugate of 
the corresponding Xi. These R;’s are themselves state 
variables, and can be identified as the temperature, T ,  
the (negative) pressure, -P, and the chemical potentials 
p1, p2, . : . , when Xi is taken to be S, V,  and N1, N2, . . . , 
respectively. 

Ri = ( 4. u/$’Xi  1x1. , .xj-lxi+ 1. , . 

T = (aU/aS)V,NI,Nz.. . 

-p = (aU/aV)S,N1,Nz., . 

PI = (aU/aNds,v,N2.. . ( e t 4  (5) 
In analyzing thermal properties of a system, one seeks 
to determine how the state variables Ri, Xi may be af- 
fected by various disturbances, and how the responses 
to one type of disturbance (e.g., addition of heat) must 
be related to those of other types (e.g., volume changes, 
addition of reagents, etc.) according to the dictates of 
the empirical laws of thermodynamics. 

What is surprising is that the Gibbsian formalism can 
be regarded as but one mathematical representation of 
an underlying abstract theory (in a Euclidean space of 
finite dimensionality) which permits a quite different 
representation based on matrix algebra. The key to this 
alternative viewpoint is a suitable scalar product ( i ( j )  
of abstract thermodynamic  vector^'^, namely3a 

( i l j )  = (aRi/aXj)xl..  . X , - ~ X , + ~ .  . .. (6) 
Unlike the corresponding quantum-mechanical defi- 
nitions lb ,  2b of ordinary Hilbert space, the thermo- 
dynamic definition 6 does not obviously possess the 
(distributive, symmetric, and positive) qualities of a 
Euclidean scalar product. Indeed, , many possible 
mathematical functions U(X1,  Xp, . . .) could be im- 
agined for which (6) is quite meaningless. Nevertheless, 
we shall show that nature (as represented by the em- 
pirical “laws of thermodynamics”) exhibits only such 
functions U as conform with (6) in a fully Euclidean 
sense. Indeed, eq 6 could be regarded as a rigorous, if 
unconventional, summary of the laws of thermody- 
namics on which the Gibbsian formalism rests, in a 
sense we shall shortly describe. 

Empirical Laws of Thermodynamics 
The empirical principles which govern the behavior 

of thermodynamic systems are traditionally stated in 
the form of   law^",^ from which the characteristics of 
specific systems should subsequently be derived. The 

(6) R. B. Griffiths and J. C. Wheeler, Phys. Reu. A ,  2, 1047 (1970). The  
“fields” are essentially those intensive variables which, a t  equilibrium, assume 
the same numerical value in every portion of the system. 

( 7 )  It is interesting that Gibbs altogether refrained from speaking of “laws 
of thermodynamics” in his monumental paper (ref 1, p 5 5 ) ,  preferring instead 
to refer to  the “criteria of equilibrium and stability”. 
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objective is thereby to distinguish the empirical (in- 
ductive) elements of the theory from those which are 
purely deductive and mathematical. Yet the proper 
statement of such laws has been a matter of persistent 
ambiguity. Koeni? identified no fewer than 13 distinct 
forms of the second law, and additional controversy 
surrounds the content or number of other possible laws. 
However, empirical “laws” whose primary purpose is 
to  define thermodynamic variables (e.g., to  lay a basis 
for experimental thermometry, or for definitions of 
thermal and mechanical variables) can be distinguished 
from those which govern the characteristic relation- 
ships among these variables. Following Gibbs, we 
therefore assume that it is meaningful to associate 
properties P, V, S ,  T ,  etc. with each equilibrium state, 
and seek now to describe the relationships among such 
properties which are characteristic of a chosen state. 

The key empirical observations which a formal theory 
of equilibrium thermodynamics must undertake to in- 
corporate can be expressed succinctly in terms of the 
thermodynamic potential (eq 3) and its low-order de- 
rivatives: 

( I )  Existence of thermodynamic potentials, e.g., the 
observation that an equilibrium system can be com- 
pletely characterized for thermodynamic purposes in 
terms of a mathematical f u n ~ t i o n , ~  the internal energy 
U = U(X1, X2, . . . , Xr), which (a) depends on only 
some small determinate number (fixed by the Gibbs 
phase rule) of independent state properties, and (b) is 
sufficiently “smooth” to possess low-order derivativeslO 
satisfying the usual rules of the partial differential 
calculus. 

(11) T h e  first law, e.g., the observation that the in- 
ternal energy is a state property, and therefore satisfies 
the requirement for an exact differential 

( 7 )  

( I I I )  T h e  second law, e.g., the observation that the 
internal energy is minimized at  constant entropy (or, 
equivalently, that the entropy is maximized at  constant 
energy) in an isolated equilibrium state, and hence 

In these latter equations, it is understood that the 
variables Xi may represent a n y  possible nonsingular 
linear transformation of the basic extensive variables 

Observations I1 and I11 (the conservation of energy 
and its convexity with respect to each argument Xi) are 
well known, but observation I summarizes information 
whose empirical content is easily overlooked. Yet (Ia), 
for example, is undeniably empirical; indeed, the fact 
that states of a simple fluid could be described in terms 
of only two (rather than, e.g., loz3) variables is, from the 
microscopic point of view, perhaps the most notable 
aspect of macroscopic thermodynamics. Similarly, no 
general principles of pure mathematics would guarantee 

S, V, N1, N2, . . . . 

( 8 )  F. 0. Koenig, Suru. Prog. Chem., 7,  in press. 
(9) The  entropy function, with LJ as an argument, might alternatively be 

chosen; here we proceed in what has been called the “energy representation” 
by H. B. Callen, “Thermodynamics”, Wilep, New York, S.Y., 1960. p 36. 

(IO) Specifically, (finite) derivatives of first and second order. I t  may occur 
that  second derivatives of C are multivalued, depending on the order and di- 
rection in which the limiting procedures of differentiation are carried out (e.g., 
on which side of a phase boundary the property is evaluated). 

that an arbitrary function U(X1, Xa, . , . , X,) is suffi- 
ciently well behaved to possess the low-order derivatives 
asserted by (Ib). 

The content of (11) and (111) commonly appears in 
other forms in textbooks. I t  was among Gibbs’ most 
inspired insights to  recognize that thermodynamics 
could be successfully formulated in terms of individual 
equilibrium states, completely by-passing the cycles, 
engines, perpetual-motion devices, and related “pro- 
cesses” on which the formalism had seemingly de- 
pended since the time of Carnot. While many Gibbsian 
innovations eventually found their way into the text- 
books, this simple, basic change in perspective by and 
large did not. Yet the advantages of this “Gibbs per- 
spective” regarding the clear formulation of principles 
and rigorous deduction of their consequences can 
scarcely be doubted. Whether or not one adopts this 
perspective for the conventional treatment in terms of 
partial differential equations, it becomes indispensable 
as one seeks to make contact with a geometric repre- 
sentation of the theory. 

The so-called “third law” of course played no role in 
the Gibbsian formalism. Fowler and Guggenheimll 
concluded that the only valid form of this law asserts the 
inaccessibility of the absolute zero of temperature, e.g., 
that the internal energy function cannot correspond to 
states of perceptible response but imperceptibly small 
absolute temperature. Such a restriction (to which we 
return below) need not be of direct concern in describing 
the usual states of finite temperature. 

Metric Geometry of Equilibrium 
Thermodynamics 

An abstract metric space can be characterized by a 
simple set of mathematical axioms. Objects -Ri which 
conform to these axioms are isomorphic to the vectors 
of a Euclidean space, and can be labeled as “vectors” 
I -R; ) and manipulated by the familiar rules of Euclidean 
geometry. In other words, though the objects Y?i might 
initially have arisen with no reference to “geometry”, 
they can be put into one-to-one correspondence with the 
elements (“vectors”) of a Euclidean vector space, and 
their behavior (mathematical relationships, rules of 
combination, etc.) will be in all respects identical with 
the behavior of corresponding Euclidean vectors. For 
example, the thermodynamic temperature and pressure 
variables apparently have only scalar (rather than 
vectorial) significance, yet their relationships in states 
of thermal equilibrium are, for the reasons described 
below, precisely those which are characteristic of Eu- 
clidean vectors. Thus, one may advantageously speak 
of a “temperature vector” IT) or “pressure vector” 1.P) 
(just as one speaks of a solution I* )  of Schrodinger’s 
differential equation as a “vector” in abstract Hilbert 
space) and manipulate these objects according to the 
Euclidean rules which this nomenclature suggests. 

The key axiomatic requirement for an abstract metric 
space of dimension r is that the scalar product ( Ril Rj) 
should have the Euclidean properties:12 

(11) R. Fowler and E. A.  Guggenheim, “Statistical Thermodynamics”, 
Cambridge University Press, New York, N.Y., 1956, pp 223-229. 

(12) See, e.g., P. Dennery and A. Krzywicki, “Mathematics for Physicists”, 
Harper and Row, New York, N.Y., 1967, pp 109-111. I t  may be noted that  ax- 
ioms 1’-111’ are essentially equivalent to the triangle inequality or the Schwarz 
inequalit) for every vector of the space. These permit somewhat different ex- 
positions of the geometrical formalism; see, e.g., F. Weinhold, Phys. Today ,  29, 
23 (1976). 
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(%ilA%j+ M B ~ )  = A(%il%j) + ~ ( 3 i l B ~ k )  (1’) 
( .RilRj) = (WjlWi) (11’) 

( %il -Ri ) 1 O (= O only if I % i  ) = 0 )  (111’) 
In particular, the distributive axiom I’ requires that  i t  
should be meaningful to form the vector I A%i + p B j )  
= AI % i >  + p1 Bj )  from any pair of vectors I Wi), I B j )  
and real scalars A, p. 

We can now show that the thermodynamic field 
properties Ri of eq 4 do indeed conform to the axioms 
1’-111’, and can be associated with abstract vector 
symbols 1 %i ) 

I%i) “Ri  ( 9 4  
if we define the scalar product ( Bil%j> as in eq 6 

(ail Bj ) = (aRi/aXj)xl.. .xj-lxj+l. , .x, (9b) 
For example, one sees that the symmetric property (11’) 
of the scalar product is assured by the first law (11) (and 
conversely), since eq 7 can be written as 

aRi aR, 
aXj aXi 
-- 

which is precisely axiom 11’. Similarly, the positivity 
property 111’ is evidently assured by the second law (111) 
(and conversely), since inequality 8 is equivalent to 

aRi -10 8Xi 
which is axiom III’.I3 It is not quite so evident that the 
distributive axiom I’ ensures, and is ensured by, ob- 
servation Ib. However, ref 3a details the argument by 
which one confirms that the rules of the partial differ- 
ential calculus (the “chain rules”, etc.) for differentials 
dRi, dX, are precisely the distributive property I’ of the 
scalar product 9b. In effect, the low-order differentials 
have a simple linear behavior like that associated with 
linear vector spaces, and it becomes advantageous to 
represent these linear relationships by means of such 
a space rather than (less directly) by the formal rules of 
the partial differential calculus. 

With the axiomatic properties 1’, 11’, 111’ guaranteed 
by observations Ib, 11, and 111, respectively, it remains 
for observation Ia, the Gibbs phase rule, to set the di- 
mensionality r of the abstract space 

r = c - u + 2  (12)  
where c and v are the number of independent chemical 
components and of phases, respectively. However, as 
shown in ref 3a, the phase rule also plays a role in 
guaranteeing the portion of axiom 111’ which requires 
that (%;I .Ri ) cannot vanish unless I % i )  = 0. Further- 
more, this dimensionality limitation also precludes the 
occurrence of states of finite heat capacity a t  T = 0. To 
see this, one may note that, when % i  = T (the “tem- 
perature vector”), eq 9 becomes 

(T IT)  = (”) aS v = TIT ($)”= T I C v  (13) 

However, I T) = 0 can be recognized to be a violation of 
the Gibbs phase rule, as it would reduce the number of 
degrees of freedom (dimensions) below what is known 

(13) The proper provision for the case of equality in axiom 111’ is described 
in ref 3a, and will be seen to depend on the Gibbs phase rule, observation Ia. 

to  be required empirically. Axiom 111’ correspondingly 
guarantees that  (‘TIT) f 0, and hence that  the heat 
capacity C, must always approach zero as rapidly as T 
if a violation of Gibbs’ phase rule is to be averted. 
Consideration of other thermodynamic vectors shows 
that the same must be true of the isobaric heat capacity, 
C,. This suggests that essential elements of the so-called 
“third law” are already implicit consequences of the 
Gibbs phase rule, when the metric significance of the 
latter is taken fully into account. 

Some General Features of the Geometric 
Representation 

The representation of equilibrium thermodynamics 
which arises from eq 9 has been outlined in ref 3b-e. As 
even a brief sketch of general thermodynamic theory 
from the geometric viewpoint would carry this Account 
beyond permissible bounds, we shall only remark here 
on some general respects in which the geometric rep- 
resentation differs appreciably from the familiar for- 
malism. 

Physical Interpretation. State variables appear in 
the form of vectors whose lengths and orientations are 
related to  heat capacities, compressibilities, and other 
measurable properties of the system, as determined by 
eq 9b. The lengths of vectors express the extent to which 
a field variable will respond to a change in the associated 
conjugate variable, while their angles of separation ex- 
press the extent to which a change in one variable will 
affect the field conjugate to some other variable (e.g., 
the extent to which the various modes-thermal, me- 
chanical, chemical, etc.-of the system are “coupled”). 
Geometrical deductions concerning the lengths and 
orientations of thermodynamic vectors will in turn have 
direct observational  consequence^.^^ 

Conjugate Variables. “Conjugate” pairs R,,  X ,  of 
variables are found to be geometrically associated with 
vectors I 3, ) , I X, ) having the biorthogonality property, 
e.g. 

(%,I X, ) = a,, (14) 
Just as the variables Ri (and vectors 1 2, ) ) arise from 
partial derivatives of U with respect to the X,’s (as in 
eq 4,9b), so are the conjugates X ,  (and associated vec- 
tors 1 X, ) )  obtained as derivatives of U with respect to  
the R,’s 

I XL) X ,  = (aUl&)Rl. . . R ~ - ~ R , + ~ .  . .R? (15a) 
with 

Xi) = (aX,/aRj)R1,. .R,-lR,+l .R, (15b) 
e.g., with symmetric interchange of the roles of the R’s 
and X’s.  The formalism thus manifests a high degree 
of symmetry between variables and their conjugates and 
permits construction of the field variables conjugate to 
arbitrary choices of the independent thermodynamic 
 coordinate^.^^^^ 

Normal Fields. The special set of variables which are 
self- conjugate are called “normal fields” (analogous to 
“normal coordinates’’ of a vibrating molecule) and 
furnish a particularly convenient orthonormal basis set 
to span the metric space. The orientation of these field 
vectors relative to the temperature, pressure, and other 
vectors is deterrriined from the eigenvalues and eigen- 
vectors of the metric matrix of the 
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“r( r + 1)/2 Rule”. The fixed dimensionality r of the 
space, set by Gibbs’ phase rule (eq 12) ,  limits the num- 
ber of independent response functions (e.g., number of 
independent elements of the metric matrix) to r ( r  + 
1)/2. When this number of independent properties has 
been measured, the thermodynamic geometry is com- 
pletely specified, and remaining properties can in 
principle be calculated from this basic  et.^^,^ 

Stability Inequalities. The stability conditions of 
equilibrium thermodynamics can be written in the form 
of the Schwarz inequality, e.g., as statements of the form 

or 

cos2 0 I 1 

for the angles B between thermodynamic vect01-s.~~ In 
this form, the analogy with variational inequalities of 
quantum theor9  can be seen. 

Gibbs-Duhem Relation. The Gibbs-Duhem rela- 
tion occurs as the equation of linear dependence among 
r + 1 vectors in the r-dimensional space.3b Additional 
equations of linear dependence arise with each addi- 
tional phase, as the spatial dimensionality is succes- 
sively reduced in accordance with the Gibbs phase rule 
( Y  - Y + 1 implying r - r - 1). Each such equation 
corresponds to an “invariant” (or “symmetry”) of the 
system, e.g., to a set of changes of S ,  V,  N 1 ,  N2, . . . , 
which leave the state of the system unchanged. Each 
such invariant (including the Gibbs-Duhem invariant) 
is associated with a null eigenvector of the thermody- 
namic metric matrix.3e 

Changes of Variables. Changes of thermodynamic 
variables (e.g., to variables running parallel and per- 
pendicular to a coexistence curve, etc.) correspond to 
changes of the basis vectors used to span the abstract 
space. Such changes are accommodated (as in ordinary 
vector algebra) by elementary matrix transformations. 
The thermodynamic theorems sand equations can 
therefore be cast into a coordinate-free form in which 
this freedom to  “rotate axes” is always manifest.3C 

Complex Systems. In the geometric picture, ther- 
modynamic theorems and procedures can often be 
phrased in a dimension-free form (as can ordinary Eu- 
clidean geometry). Because dimensionality is connected 
with chemical complexity through the phase rule, such 
theorems and procedures generalize immediately to  
thermodynamic systems of arbitrary chemical com- 
plexity. For example, general procedures have been 
given for the evaluation of thermodynamic  derivative^^^ 
and for determining the slopes of phase boundaries 
(generalized Clapeyron equations) and conditions for 
maxima or minima in phase diagrams (generalized 
Gibbs-Konowalow laws) for multicomponent systems 
of any complexity.3e 

Laws of Thermodynamics. A characteristic feature 
of the geometric representation is that  laws of thermo- 
dynamics are no longer seen explicitly, but instead are 
incorporated into the mathematical framework (Eu- 
clidean geometry) which is employed. Conclusions 
drawn within this framework must be consistent with 
laws of thermodynamics so long as one “does geometry” 
according to Euclidean rules. The directness with which 
implications of thermodynamic laws are taken into ac- 
count will appear as an advantage in many types of 
applications. 

Summary and Conclusions 
Recognition of a geometrical quality in the underlying 

laws of thermodynamics has permitted development of 
an alternative representation of the formalism of 
equilibrium thermodynamics. This geometrical repre- 
sentation, based on the matrix algebra of a Euclidean 
vector space, forms an interesting complement to  the 
usual analytical representation. The two representa- 
tions, sharing a common empirical basis, are of course 
formally equivalent, inasmuch as eq 9 permits ready 
“translation” from one formalism to the other. Never- 
theless, the geometric representation leads naturally to 
a number of new developments which are practically 
inaccessible to  the usual methods, such as comprehen- 
sive analysis of phase equilibria (generalized Clausius- 
Clapeyron and Gibbs-Konowalow laws)3e and system- 
atic procedures for evaluating thermodynamic deriva- 
tives,3d as extensively illustrated in the original refer- 
ences. It is interesting that many of these developments 
lie in the directi’on of making complex chemical systems 
susceptible to a degree of thermodynamic analysis 
which could not realistically be contemplated with older 
methods. Thus, the new representation may be of most 
tangible value to those interested in multicomponent, 
multiphase equilibria of the complexity often encoun- 
tered in chemical and biological systems. Conceptually, 
the new representation exhibits (and exploits) the in- 
teresting relationship which unites the first and second 
laws with other spoken and unspoken empirical obser- 
vations into a single mathematical framework of sur- 
prising simplicity and ubiquity-elementary Euclidean 
geometry. Its mathematical and logical simplicity 
suggest that the new representation is of a fundamental 
character. 

Future research in this area may be concerned with 
the systematics of phase equilibria, with generalizations 
from the local Euclidean structure to a global Rieman- 
nian viewpoint, with the special features (metric 
singularities and dimensional collapse) associated with 
critical behavior, with possible extensions of the geo- 
metrical picture into the near-equilibrium domain of 
irreversible thermodynamics, and with the statistical- 
mechanical origin of the macroscopic metric structure. 


